Revisiting Sub-sampled Newton Methods

نویسندگان

  • Haishan Ye
  • Luo Luo
  • Zhihua Zhang
چکیده

Many machine learning models depend on solving a large scale optimization problem. Recently, sub-sampled Newton methods have emerged to attract much attention for optimization due to their efficiency at each iteration, rectified a weakness in the ordinary Newton method of suffering a high cost at each iteration while commanding a high convergence rate. In this work we propose two new efficient Newton-type methods, Refined Sub-sampled Newton and Refined Sketch Newton. Our methods exhibit a great advantage over existing sub-sampled Newton methods, especially when Hessian-vector multiplication can be calculated efficiently and Hessian matrix is ill-conditioned. Specifically, the proposed methods are shown to converge superlinearly in general case and quadratically under a little stronger assumption. The proposed methods can be generalized to a unifying framework for the convergence proof of several existing sub-sampled Newton methods, revealing new convergence properties. Finally, we empirically evaluate the performance of our methods on several standard datasets and the results show consistent improvement in computational efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nesterov's Acceleration For Approximate Newton

Optimization plays a key role in machine learning. Recently, stochastic second-order methods have attracted much attention due to their low computational cost in each iteration. However, these algorithms might perform poorly especially if it is hard to approximate the Hessian well and efficiently. As far as we know, there is no effective way to handle this problem. In this paper, we resort to N...

متن کامل

Nestrov's Acceleration For Second Order Method

Optimization plays a key role in machine learning. Recently, stochastic second-order methods have attracted much attention due to their low computational cost in each iteration. However, these algorithms might perform poorly especially if it is hard to approximate the Hessian well and efficiently. As far as we know, there is no effective way to handle this problem. In this paper, we resort to N...

متن کامل

Newton Sketch: A Linear-time Optimization Algorithm with Linear-Quadratic Convergence

We propose a randomized second-order method for optimization known as the Newton Sketch: it is based on performing an approximate Newton step using a randomly projected or sub-sampled Hessian. For self-concordant functions, we prove that the algorithm has super-linear convergence with exponentially high probability, with convergence and complexity guarantees that are independent of condition nu...

متن کامل

GPU Accelerated Sub-Sampled Newton's Method

First order methods, which solely rely on gradient information, are commonly used in diverse machine learning (ML) and data analysis (DA) applications. This is attributed to the simplicity of their implementations, as well as low per-iteration computational/storage costs. However, they suffer from significant disadvantages; most notably, their performance degrades with increasing problem ill-co...

متن کامل

Sub-sampled Newton Methods with Non-uniform Sampling

We consider the problem of finding the minimizer of a convex functionF : R → R of the form F (w) := ∑n i=1 fi(w) + R(w) where a low-rank factorization of ∇fi(w) is readily available. We consider the regime where n d. We propose randomized Newton-type algorithms that exploit non-uniform sub-sampling of {∇fi(w)}i=1, as well as inexact updates, as means to reduce the computational complexity, and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1608.02875  شماره 

صفحات  -

تاریخ انتشار 2016